
PageKit 1.13

 Next

PageKit 1.13

User’s Guide

T.J. Mather

Boris Zentner

Copyright © 2004 T.J. Mather

Table of Contents

1. Overview of Features
Model/View/Content/Controller approach to design

Model
View
Content
Controller

Model of OO Perl Classes
Base Model Class
Derived Model Class
Inheritance Hierarchy

XSLT and HTML::Template::XPath
XSLT
HTML::Template::XPath

Language Localization
Applying to Content: HTML::Template::XPath
Applying to Content: XSLT
Applying to Model
Character set translation

Caching
Component based architecture
Sessions
Authentication
Form Validation
Sticky HTML Forms
Multiple Views
On-line Editing tools
Error Reporting

2. Reference
Configuration Options

Global Attributes
Section Attributes
Server Attributes
User Attributes
View Attributes
Page Attributes

Model API
PageKit Extensions
PageKit API

PageKit Template Tags
XML content tags
Model tags
PageKit tags

Request parameters

Chapter 1. Overview of Features
$Id: features.xml,v 1.21 2003/11/25 10:20:24 borisz Exp $

Table of Contents

Model/View/Content/Controller approach to design
Model
View
Content
Controller

Model of OO Perl Classes
Base Model Class
Derived Model Class
Inheritance Hierarchy

XSLT and HTML::Template::XPath
XSLT
HTML::Template::XPath

Language Localization
Applying to Content: HTML::Template::XPath
Applying to Content: XSLT
Applying to Model
Character set translation

Caching
Component based architecture
Sessions
Authentication
Form Validation
Sticky HTML Forms
Multiple Views
On-line Editing tools
Error Reporting

Model/View/Content/Controller approach to design
PageKit follows a Model/View/Content/Controller design pattern, which is an adaption of the
Model/View/Controller pattern used in many other web frameworks, including Java’s Webmacro and
Struts.

The Model is the user provided classes, which encapsulate the business logic behind the web site

View is set of PageKit Templates, or XSLT files that generate PageKit Templates

Content is set of XML Files

Controller is PageKit

This approach parallels the division of the job responsibilities of a large web development team. The
programmers can focus on the Model, the designers on the View, and the content administrators on the
(you guessed it!) Content. PageKit provides the Controller which glues everything together.

This way everybody can focus on what they do best, whether it is programming, design, or content.
Since the interfaces are simple and well-defined they can easily work together without interfering with
each other.

Model

The Model is provided by Perl classes which implement the business logic that is custom to the site.
These class files should be located in the Model/ directory. Each URL is translated into a class and
method automatically.

It includes support for Data::FormValidator, making the tedious task of input validation easier. To
validate a form, you simply specify required fields and constraints. If there is an error, you can return
to the input form, and the invalid fields automatically get highlighted in red.

View

The View is defined by a set of PageKit Templates making up pages and their components located in
the View/ directory. These templates can be in HTML, WML, XML, or any text based format.

Alternatively, you can provide a set of XSLT files that will generate PageKit Templates.

PageKit Template is based on HTML::Template. There are different sets of tags, depending on where
the data is being pulled from.

The Model Tags, <MODEL_VAR>, <MODEL_LOOP>, and <MODEL_IF>, are filled with data by
the Model.

The Content Tags, <CONTENT_VAR> and <CONTENT_LOOP>, contain XPath queries to the
Content XML data.

The PageKit Tags are set internally by the Controller.

http://search.cpan.org/doc/MARKSTOS/Data-FormValidator-1.6/lib/Data/FormValidator.pm
http://kobesearch.cpan.org/search?dist=HTML-Template

It is easy to implement multiple views, such as a printable version of a web page or a co-branded site.
To create a new view, simply create a directory containing template files for the view. You only have
to create templates for pages and components that you wish to override. That is all views inherit from
the default set of templates.

Content

Content is stored in an XML files. It is accessed either through XPath queries from PageKit Template
using HTML::Template::XPath or by applying XSLT stylesheets to transform the XML into a PageKit
Template.

Language localization couldn’t be easier. Simply use the xml:lang attribute in the tags you wish to
localize. For example, to have a title available in both English and Spanish use:

 <title xml:lang="en">Title in English</title>
 <title xml:lang="es">Titulo en Español</title>

Controller

The Controller is the glue that holds everything together. To deliver a page it calls the appropriate code
in the Model, generates the PageKit Template from the Content if necessary, then fills in the tags in
the PageKit Template.

It makes the tedious task of authentication/authorization easy, with support for cookie based logins and
session inactivity timeouts. After a login or registration, the user is redirected to the protected page
they originally requested, if applicable.

Model of OO Perl Classes
Model is simply a set of OO Perl Classes whose methods get exposed to the client through URIs.

Base Model Class

You should implement one base Model class which derives from Apache::PageKit::Model .
You must specify the class in the model_base_class option.

In this class, you should implement the PageKit Extensions, and any methods that are common across
your Derived Model Classes.

Derived Model Class

The Derived Model Classes derive from your Base Model Class, and should contain methods for the
dynamic pages on your site. You must specify the prefix of these classes in the model_dispatch_prefix
option of Config/Config.xml .

Inheritance Hierarchy

This figure illustrations how model classes derive from each other and the level of specialization of
each class.

http://kobesearch.cpan.org/search?dist=HTML-Template-XPath

 +---------------------------------------+
 | Apache::PageKit::Model | Common
 | Model code that provides an interface | <------- across
 | to PageKit and is common to all sites | all sites
 +---------------------------------------+
 |
 +---------------------------------------+
 | MyPageKit::Common | Specialized
 | Model code that is particular to the | <------- For Site, common
 | site, but common across all pages | across site
 +---------------------------------------+
 / | \
 +----------------------------+ +----------------------------+
 | MyPageKit::YourClass1 | | MyPageKit::YourClassN | Specialized
 | Model code that is for a | ... | Model code that is for a | <- for set of
 | group of pages on the site | | group of pages on the site | Pages on site
 +----------------------------+ +----------------------------+

XSLT and HTML::Template::XPath
PageKit Templates use HTML::Template::XPath to include Content from the XML files. In addition,
PageKit Templates themselves can be generated from the XML using XSLT stylesheets. Currently the
only supported XSLT processer is XML::LibXSLT which uses Gnome libxslt library.

You should use HTML::Template::XPath when you would like to separate some Content from the
View, but do not want to go the full route of using XSLT.

On the other hand, if you are starting from scratch, have existing XML and XSLT files, or have
complicated transformation needs, then XSLT is probably the way to go.

XSLT

To use XSLT, you must place the Content XML files in the Content/ directory, and the View
XSLT files in the View/ directory. You must specify the XSLT template that you would like to use
using the xml-stylesheet processing instruction by placing the following on the top of your
XML file:

 <?xml-stylesheet type="text/xsl" href="my_xslt_file.xsl"?>

Note that the XSLT file specified in the href attribute is relative to the View/ pkit_view/ or the
View/Default/ directory.

All of the input request parameters are available to the XSLT file by using the xsl:param tag in the
top level of the file.

The output of XSL Transformation should be a PageKit Template or a HTML/XML/WML file (which
is a special case of a PageKit Template file, namely one without any PageKit tags). Note that the Data
from the Model gets filled in after the XSL transformation. This is done for performance reasons - the
XSL tranformation can be cached, even if the data from the model is updated.

http://kobesearch.cpan.org/search?dist=XML-LibXSLT

HTML::Template::XPath

Using HTML::Template::XPath is easy with PageKit, it is build into the PageKit Template by using
<CONTENT_VAR> and <CONTENT_LOOP> tags, which contain XPath queries to the Content
XML data.

The Content XML file defaults to Content/ page_id.xml or can be specified using XPath’s
document() function.

Language Localization
One of the main advantages of separating out the Content from the View is that it is easy to implement
multiple languages while sharing the same look-and-feel. You may use the xml:lang to label which
languages tags are in.

The preferred language of the user is determined as follows.

The default language preference is set to the Accept-Language incoming HTTP header.

This default value can be overridden by setting the pkit_lang request parameter.

Applying to Content: HTML::Template::XPath

HTML::Template::XPath supports language localization through the use of the xml:lang attribute.
In PageKit 1.01 and above, the algorithm for selecting the node(s) for the selected languages is as
follows:

First it attempts to use the XPath function lang to return the node or the set of nodes whose
xml:lang attribute(s) are the same as the preferred language. If the node has no xml:lang ,
then the value of the xml:lang attribute on the nearest ancestor is used. If the node and the its
ancestors have no xml:lang attribute, then the default_lang language is used.

If no nodes are found in the preferred language, then it returns the node(s) which are in the
default_lang language.

The algorithm in PageKit 1.00 is slightly different from the above, but follows the same basic idea.

Applying to Content: XSLT

As of release 1.00 there is no support for Language Localization using XSLT. However I plan to offer
support in one of the two following ways:

Different source XML files, foo.en , foo.de , foo.es , and so on.

PageKit will set the <xsl:param name="pkit_lang"> tag in the XSLT stylesheet.

Comments, suggestions, and patches welcome!

Applying to Model

To use the language settings from the Model, simply use the pkit_lang method.

This can be useful for selecting content from the database based on language.

Character set translation

By default, PageKit attempts to output using default_output_charset. PageKit will attempt to translate
the PageKit Templates and output passed to output_convert from default_input_charset to
default_output_charset.

Note: This also applies also to the message catalog if any. So write your message catalog files in
default_input_charset.

PageKit attempts to translate the output to a character set that is specified in the Accept-Charset
header. If this is not possible, PageKit delivers the page in the default_output_charset.

Caching
Currently PageKit supports on-disk caching of compiled PageKit Templates. Future versions should
also include in-memory caching and caching of Model output.

XSL transformations are also cached, taking into account any input request parameters that are used in
xsl:param tags contained in the top-level the XSLT file.

Component based architecture
Components are similar to Server Side Includes (SSIs), in that the include PageKit Templates inside
other PageKit Templates. However, the can also have code associated with them that fills in the Model
Tags, including <MODEL_VAR>, <MODEL_LOOP>, and <MODEL_IF>.

The PKIT_COMPONENT tag specifies where the component should be included. The Component can
either be a PageKit Template file, or a PageKit Template generated from the
Content/ component_id.xml XML file.

The following example illustration how absolute and relative paths work:

 # absolute path - includes View/ pkit_view/foo/bar.tmpl
 # or output generated from Content/foo/bar.xml
 <PKIT_COMPONENT NAME="/foo/bar">
 # relative path, includes the bar.tmpl or bar.xml in the directory
 # of the enclosing PageKit Template/XML File.
 <PKIT_COMPONENT NAME="bar">

Sessions
PageKit uses a subclass of Apache::SessionX to provide sessions. It sets a cookie named
pkit_session_id with an expiration of session_expires , if applicable.

http://kobesearch.cpan.org/search?dist=Apache-SessionX

To access the session, use

 # gets hash tied to Session
 my $session = $model->session;
 # gets session value
 my $count = $session->{’count’};
 $count++;
 # sets session value
 $session->{’count’} = $count;

PageKit takes care of opening and closing sessions. Note that sessions are only created when
something is written to session hash.

Warning!

Because of the way Apache::SessionX works, the session only gets saved if top level element in the
tied hash gets changed.

 # session will not be saved, if ’foo’ was already in $session.
 my $session = $model->session;
 $session->{’foo’}->{’bar’} = 1;

 # session will be saved
 my $session = $model->session;
 $session->{’foo’}->{’bar’} = 1;
 # since ’baz’ is top level element and is assigned, session will be saved
 $session->{’baz’} = 1;

To store information during a request, use the pnotes method.

As of PageKit 1.05, there is support for associating sessions with authentication. The associated
session ID may be specified by the second argument returned my pkit_auth_session_key. When a user
logs in, their current session may be merged with the session stored with their user ID. To override the
default behavior, use the pkit_merge_sessions hook.

As of PageKit 1.08, there is support for page based sessions.

Authentication
When a user logins in, the pkit_login request parameter must be set to a true value. In addition, if
you want the user to be redirected to another page, set the pkit_done parameter. To do this, place
the following hidden fields in your login form page:

 <!-- Login Page -->
 # will get set by pagekit to the page the user is requesting
 <input type="hidden" name="pkit_done">
 <input type="hidden" name="pkit_login" value="1">

If pkit_login is set to a true value, then PageKit calls pkit_auth_credential method. If
this method returns a session key, then PageKit redirects to the page specified by pkit_done , setting
the cookie pkit_id to the session_key.

While the user is logged in, PageKit checks the session_key by using the
pkit_auth_session_key method. If the pkit_logout request parameter is set, then the user
is logged out.

PageKit access to pages based on the require_login attribute. If require_login is set to
recent, then PageKit requires that session is currently active in the last recent_login_timeout
seconds.

Note, that the pages default_page , verify_page and login_page can not be protected in
any way.

Form Validation
PageKit uses Data::FormValidator to provide easy form validation. Highlights fields in red that user
filled incorrectly by using the PKIT_ERRORFONT tag. In addition, error message(s) are displayed
using the PKIT_MESSAGES tag. To use, pass an input profile to the pkit_validate_input
method.

In addition, you may implement your own custom error handling by using pkit_set_errorfont
to set the PKIT_ERRORFONT tags.

Sticky HTML Forms
PageKit uses HTML::FillInForm to fill in HTML Forms with the request parameters. You can turn
this feature off by setting fill_in_form to no.

One useful application is if you have set up error handling and if an user submits an HTML form
without filling out a required field, PageKit will re-display the HTML form with all the form elements
containing the submitted info.

In additon to filling in request parameters, you may fill in the HTML fields from the model by using
the fillinform method.

Multiple Views
Any page can have multiple views, by using the pkit_view request parameter. One example is
Printable pages. Another is having the same web site branded differently for different companies.
Another is having different Media outputs such as HTML, XML and WML, by using the content_type
configuration options.

To create a new view, create a View/ pkit_view directory and place the PageKit Templates and
XSLT files for the pages and components that you wish to apply the view to. Note that if PageKit
doesn’t find a template or XSLT file in the View/ pkit_view directory it looks in the
View/Default directory. That is, the files View/ pkit_view "override" the files in
View/Default directory.

To association a media output such as XML, WML, or PDF with a view, use the View content_type
attribute. Note that in order for PDF output to work, you must install the Apache XML FOP processor,
available from http://xml.apache.org/fop/, and configure fop_command to point to the FOP processor.

You may set the pkit_view request parameter in the request URI or by using
$model->input(pkit_view => pkit_view); in your model code.

http://search.cpan.org/doc/MARKSTOS/Data-FormValidator-1.5/lib/Data/FormValidator.pm
http://kobesearch.cpan.org/search?dist=HTML-FillInForm
http://xml.apache.org/fop/

On-line Editing tools
PageKit supports a set of simple on-line editing tools. To enable, set can_edit in your server config.
You will also need to call in your Model code:

 $model->output(pkit_admin => 1);

Error Reporting
PageKit uses Apache::ErrorReport to report errors. It reports warnings and fatal errors to screen or
e-mail. Includes detailed information including error message, call stack, uri, host, remote host, remote
user, referrer, and Apache handler.

To use, place the following in the your httpd.conf file:

 PerlModule Apache::ErrorReport
 PerlSetVar ErrorReportHandler display

If ErrorReportHandler is set to display, errors will be displayed on the screen for easy
debugging. This should be used in a development environment only.

If ErrorReportHandler is set to email, errors will be e-mailed to the site adminstrator as
specified in the Apache ServerAdmin configuration directive. This should be used on a production
site.

Chapter 2. Reference
$Id: reference.xml,v 1.65 2003/10/07 13:29:54 borisz Exp $

Table of Contents

Configuration Options
Global Attributes
Section Attributes
Server Attributes
User Attributes
View Attributes
Page Attributes

Model API
PageKit Extensions
PageKit API

PageKit Template Tags
XML content tags
Model tags
PageKit tags

Request parameters

Configuration Options

Global Attributes

These settings are global in the sense that they apply over all servers, views, and pages. They are
attributes of the <GLOBAL> tag in Config/Config.xml .

cache_dir

Specifies the directory where the PageKit Template cache files are stored. Defaults to
View/pkit_cache .

cookies_not_set_page

This is the page that gets displayed if the user attempts to log in, but their cookies are not enabled.
Defaults to login_page .

default_errorstr

Default errorstr, that PageKit use for PKIT_ERRORSTR, pkit_set_errorspan and the obsolete
pkit_set_errorfont.

Defaults to #ff0000.

default_input_charset

Default charset that PageKit Templates and Model output are encoded in. Defaults to
ISO-8859-1. PageKit uses this to convert the PageKit templates and output from output_convert
to UTF-8.

default_output_charset

Default charset that PageKit templates compiled to. Defaults to ISO-8859-1. This should be the
charset that supports your default_input_charset and has good support among the client’s
browsers.

default_lang

Default language outputed when no language is specified or request language is not available.
Defaults to en.

default_page

Default page user gets when no page is specified. Defaults to index.

errorspan_begin_tag

Specifies the start tag for <PKIT_ERRORSPAN ... > and <PKIT_ERRORFONT ... >. Defaults to
<font color="<PKIT_ERRORCOLOR>">.

 errorspan_begin_tag = ""
 errorspan_end_tag = ""

See also errorspan_end_tag .

errorspan_end_tag

Specifies the end tag for <PKIT_ERRORSPAN ... > and <PKIT_ERRORFONT ... >. Defaults to
.

See also errorspan_begin_tag .

fop_command

Command line that should be used to run Apache XML FOP to generate PDF output. PageKit
will append FO file and PDF file arguments at end.
 # some example fop command lines
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.CommandLine"
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.CommandLine"
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.Fop"
 fop_command = "/usr/lib/java/bin/java -classpath /opt/fop-0.20.3/lib/xerces-1.2.3.jar:/opt/fop-0.20.3/lib/xalanj1compat.jar:/opt/fop-0.20.3/lib/xalan-2.0.0.jar:/opt/fop-0.20.3/lib/xalan-1.2.2.jar:/opt/fop-0.20.3/lib/stylebook.jar:/opt/fop-0.20.3/lib/logkit-1.0b4.jar:/opt/fop-0.20.3/lib/buildtools.jar:/opt/fop-0.20.3/lib/bsf.jar:/opt/fop-0.20.3/lib/batik.jar:/opt/fop-0.20.3/lib/avalon-framework-4.0.jar:/opt/fop-0.20.3/lib/ant.jar:/opt/fop-0.20.3/lib/ant-1.3-optional.jar:/opt/fop-0.20.3/build/fop.jar: org.apache.fop.apps.Fop"

Can be overriden by specifying the server fop_command configuration option.

gzip_output

If set to all, output is gzipped dynamic and static content for browsers that send a
Accept-Encoding header containing gzip . If set to static, output is gzipped for static pages
only. Defaults to none.

login_page

Page that gets displayed when user attempts to log in. Defaults to login.

logout_kills_session

When pkit_logout is called it normally resets just the pkit_id cookie. With logout_kills_session
enabled (set to yes), pkit_logout will also reset pkit_session_id and forcing a new pkit_session_id
cookie to be set with a new session_id. Defaults to yes.

model_base_class

Specifies the base Model class that typically contains code that used across entire the web
application, including methods for authentication and connecting to the database.

If you have multiple PageKit applications running on the same mod_perl server, then you’ll need
to specify a unique model_base_class for each application.

Defaults to MyPageKit::Common .

model_dispatch_prefix

This prefixeds the Derived Model Classes. Defaults to MyPageKit::MyModel.

Methods in this class take an derived Apache::PageKit::Model object as their only argument.

not_found_page

Error page when page cannot be found. Defaults to default_page .

page_session

Sets the default for all non static pages. If set to yes, every non static page gets a unique session.
Defaults to no. This value is overridden with page_session .

page_session_class

Name for the Module, that is used to create the page_session objects. Defaults to
Apache::SessionX.

post_max

Maximum size of file uploads, in bytes. Defaults to 100,000,000 (100 MB).

upload_tmp_dir

Temporary directory for file uploads. Defaults to whatever libapreq finds usefull. This options is
only usefull if you use libapreq >= 1.0. The temporary directory usually needs to reside on the
same filesystem as the location supplied to the upload object’s

link

method. See the Apache::Request documentation for further information.

protect_static

If set to yes static files can also be protected with the require_login attribute in the SECTION or
PAGE tags. Set this option to no to be compatible to PageKit < 1.09. Defaults to yes.

recent_login_timeout

Seconds that user’s session has to be inactive before a user is asked to verify a password on pages
with the require_login attribute set to recent. Defaults to 3600 (1 hour).

relaxed_parser

If set to yes, this option allows template tags to be placed inside HTML comments. It also permits
spaces and newlines within the tag itself. This option may be useful to HTML authors who would
like to validate their templates’ HTML syntax prior to processing, or who use DTD-aware editing
tools. Defaults to no.

 relaxed_parser = "yes"

 # these tags are all allowed if relaxed_parser is enabled:
 <MODEL_VAR NAME="x">
 < MODEL_VAR NAME = ’x’ >
 < MODEL_LOOP NAME = x >
 < PKIT_COMPONENT NAME = x />
 <!-- MODEL_VAR NAME="x" -->
 <!-- CONTENT_VAR NAME = "x" /-->

request_param_in_tmpl

If set to yes, then <MODEL_VAR> tags in template automatically get filled in with corresponding
request parameters across all pages. Can be overriden by the corresponding page attribute.
Defaults to no.

session_class

Name for the Module, that is used to create the session objects. Defaults to Apache::SessionX.

session_expires

Sets the expire time for the cookie that stores the session id on the user’s computer. If it is not set,
then the expire time on the cookie will not be set, and the cookie will expire when the user closes
their browser.

 session_expires = "+3h"

template_class

Name for the Module, that is used to create the template objects. Defaults to HTML::Template.

uri_prefix

Prefix of URI that should be trimmed before dispatching to the Model code.

See also pkit_fixup_uri in the Model API.

use_locale

If set to yes pkit translates the original message to the language of the client if possible. If reload
is set to yes, the translationtables are reloaded on every usage else only on first usage.

Defaults to no. See also pkit_gettext and pkit_gettext_message in the Model API.

verify_page

Verify password form. Defaults to login_page .

Section Attributes

These options are global across each server and all Views. They are in the <SECTIONS> tag of
Config/Config.xml .

All Page attributes are valid. <SECTION> Tags with the longest matching part of the id attribute
provide the defaults for pages without the attribute in question. <PAGE> attributes written in the
<PAGE> tag have the highest priority. If nothing is found the <SECTION> Tags are scanned for a
default. The closest match wins and the search is over. See the line with /xyz in the example bellow, if
we request /xyz/abc, the search ends at the line with id=’/xyz’ and the page does not require a login!

 <SECTIONS>
 <SECTION id=’/’ require_login=’yes’/>
 <SECTION id=’/xyz’ request_param_in_tmpl=’yes’/>
 <SECTION id=’/free’ require_login=’no’/>
 </SECTIONS>

id

This is part of the uri path to the page where the defaults take place. ’/’ Means the whole site.
This attribute is needed in every <SECTION> tag.

Server Attributes

These options are global over all pages, but are local to each server configuration (e.g. production,
staging, development). They are located in the <SERVERS> tag of Config/Config.xml .

can_edit

If set to yes, enables on-line editing tools.

cookie_domain

Domain for that cookies are issued. Note that you must have at least two periods in the cookie
domain.

If not set then cookie issued for the current domain name.

cookie_postfix

The content of cookie_postfix is appended to pkit_id and pkit_session_id . With
this option it is possible to force different names for your cookies. Usefull if for some reason your
cookies overwrite eachother.

fop_command

Command line that should be used to run Apache XML FOP to generate PDF output. PageKit
will append FO file and PDF file arguments at end.
 # some example fop command lines
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.CommandLine"
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.CommandLine"
 fop_command = "/usr/java/jdk1.3.0_02/bin/java -cp /usr/local/javaclass/fop org.apache.fop.apps.Fop"
 fop_command = "/usr/lib/java/bin/java -classpath /opt/fop-0.20.3/lib/xerces-1.2.3.jar:/opt/fop-0.20.3/lib/xalanj1compat.jar:/opt/fop-0.20.3/lib/xalan-2.0.0.jar:/opt/fop-0.20.3/lib/xalan-1.2.2.jar:/opt/fop-0.20.3/lib/stylebook.jar:/opt/fop-0.20.3/lib/logkit-1.0b4.jar:/opt/fop-0.20.3/lib/buildtools.jar:/opt/fop-0.20.3/lib/bsf.jar:/opt/fop-0.20.3/lib/batik.jar:/opt/fop-0.20.3/lib/avalon-framework-4.0.jar:/opt/fop-0.20.3/lib/ant.jar:/opt/fop-0.20.3/lib/ant-1.3-optional.jar:/opt/fop-0.20.3/build/fop.jar: org.apache.fop.apps.Fop"

html_clean_level

Sets optimization level for HTML::Clean. If set to 0, disables use of HTML::Clean. Levels range
from 1 to 9. Level 1 includes only simple fast optimizations. Level 9 includes all optimizations.
Defaults to 0. A good choice for production is 3. Higher Levels might end up in wrong pages.

reload

If set to yes, check for new view, content and config xml files on each request. Should be set to
no on production servers. Default is no.

If you change this from no to yes it is certainly that the server must be restarted to notice the
change.

http://kobesearch.cpan.org/search?dist=HTML-Clean
http://kobesearch.cpan.org/search?dist=HTML-Clean

User Attributes

These options are like the <GLOBAL> tag. With the difference, that you can store any information
here that you like. The are located in the <USER> tag of Config/Config.xml .

You can retrieve this information with the pkit_get_config_attr function.

View Attributes

These options are local to each view, but are global across servers and pages. Currently only the output
media can be set, but there are plans to have a parent_view , so that there can be multiple levels of
derived views.

content_type

Sets the content type of the output sent to the client. Content types are strings like "text/plain",
"text/html" or "application/xml". This corresponds to the "Content-Type" header in the HTTP
protocol. The following content types have default views and/or special handing associated with
them:

content_type Description Default Views Special Handing

text/html

HTML output. This
is for traditional
screen browsers
such as Netscape
and Internet
Explorer.

This is the default
content_type for
all views except
for those listed
below

PageKit translates sets the
charset in the Content-Type
headers and translates the output
according to the
Accept-Charset header.

application/pdf

PDF Output, for
display in Acrobat
Reader. Uses
Apache XML FOP

pdf
PageKit uses Apache XML FOP
to generate the PDF, if
fop_command is set.

text/vnd.wap.wml

WML output. This
is for WAP
handhelds such as
Palmpilots and
cellphones.

wml None

application/xml
XML output, for
Internet Explorer
5.0 and above.

xml None

Page Attributes

These options are local to each page on the site, but are global across each server and all views. The
are located in the <PAGES> tag of Config/Config.xml .

browser_cache

If set to no, sends an Expires = -1 header to disable client-side caching on the browser.

content_type

Sets the content type for output. Overrides the View content_type configuration option.

fill_in_form

When set to yes, automatically fills in HTML forms using HTML::FillInForm with values from the
request parameters when it detects a <form> tag. Default is yes.

id

Page ID for this page.

page_session

If set to yes, this page gets a unique session. Defaults to no. This value overriddes whatever you
have requested in page_session .

request_param_in_tmpl

If set to yes, then <MODEL_VAR> tags in template automatically get filled in with corresponding
request parameters. Defaults to the value set by the global request_param_in_tmpl attribute, or if
that is not set, then it defaults to no.

require_login

If set to yes, page requires a login. If set to recent, page requires a login and that the user has been
active in the last recent_login_timeout seconds. Default is no.

uri_match

Value should be a regular expression. Servers requests whose URL (after the host name) match
the regular expression. For example, ^member\/\d*$ matches
http://yourdomain.tld/member/4444 .

use_template

If set to yes, uses HTML::Template files. If set to no page code is responsible for sending output.
Default is yes.

Model API

PageKit Extensions

pkit_dbi_connect - Should generate and return DBI database handler, $dbh, which can be accessed by
rest of Model using the dbh method.
pkit_on_error - Can be used to catch any fatal error condition.

http://kobesearch.cpan.org/search?dist=HTML-FillInForm
http://kobesearch.cpan.org/search?dist=HTML-Template

pkit_session_setup - Returns Session setup arguments.
pkit_auth_credential - Verifies login credentials and returns session key
pkit_auth_session_key - Verifies a session key and returns the user ID and session ID
pkit_common_code - Code common across site.
pkit_post_common_code - Code common across site, executed after rest of code.
pkit_cleanup_code - Cleanup code at the end of request.
pkit_fixup_uri - filter uri for conversion into page IDs
pkit_get_config_attr - Returns the value of the attr you ask for.
pkit_get_default_page - Returns "index" page when no page_id is specified.
pkit_merge_sessions - Merges current session with session associated with login when user first logs
in.
pkit_output_filter - Filters output generated by PageKit
pkit_startup - Class method called at server startup.
pkit_default - Default class method

These methods should be defined in your base module as defined by model_base_class in
Config/Config.xml .

Name
pkit_dbi_connect — Should generate and return DBI database handler, $dbh , which can be accessed
by rest of Model using the dbh method.

Synopsis
 sub pkit_dbi_connect {
 return DBI->connect("DBI:mysql:db","user","passwd");
 }

Description
This method will probably be replaced when request-based sessions are implemented.

Name
pkit_on_error — Can be used to catch any fatal error condition.

Synopsis
 ## inside your Common.pm, maybe also in your Modelclass to overwrite the one in Common.pm

 sub pkit_on_error {
 my ($model, $err) = @_;
 my $page_id = $model->pkit_get_page_id;

 if ($err =~ /DBI/) {
 # prevent endless loop if the error happened on our errorpage.
 return $err if ($page_id =~ /db_error_page$/);
 $model->pkit_redirect(’db_error_page’);
 return;
 }

 $model->pkit_message($err);

 my $default_page = $model->pkit_get_default_page;
 return $err if ($page_id =~ /^$default_page$/);
 $model->pkit_redirect($default_page);
 return;
 }

Description
pkit_on_error main purpose is to catch errors for some reason. Maybe you can not get a database
connection or your page can not be delivered in a special charset or anywhere inside your modelcode
an uncatched die "for unknown reason"; is executed.

If nowhere else in your code this error is handled, pkit_on_error is called with the error message as
second parameter and model as the first. This is your chance to deliver a working page. At best with
pkit_redirect or pkit_send.

If an error happened inside pkit_on_error it is passed thru Apache and you get the internal server error
as before. pkit_on_error returns the error_msg that is logged. So you can change the messsage if you
like. If the returned error_msg is ’’ or undef nothing is logged and pkit assumes, that the error is
repaired. If you like to log anyway add a warn $error_msg"; inside your pkit_on_error routine.

Also pkit_on_error is no replacement for Apache::ErrorReport. pkit_on_error is more a runtime error
catcher for most cases. A::E reports errors more clear with stacktrace and so on. Both can happy live
together.

Another advantage is that you need only pkit_on_error to catch the error even if your application has
millions of cases where it could fail. There is no need to catch them all.

If pkit_on_error is not defined in your modelclass or Common.pm, it is not used.

pkit_on_error catch only fatal errors (die) NOT warnings.

If your code likes to throw an error let it die.

Name
pkit_session_setup — Returns Session setup arguments.

Synopsis
 # here a MySQL example:
 sub pkit_session_setup {
 my $model = shift;
 my $dbh = $model->dbh;
 return {
 session_lock_class => ’MySQL’,
 session_store_class => ’MySQL’,
 session_args => {
 Handle => $dbh,
 LockHandle => $dbh,
 },
 };
 }

 # this one is if you prefer PostgreSQL
 sub pkit_session_setup {
 my $model = shift;
 my $dbh = $model->dbh;

 my %session_setup = (
 session_store_class => ’Postgres’,
 session_lock_class => ’Null’,
 session_serialize_class => ’Base64’,
 session_args => {
 Handle => $dbh,
 IDLength => 32,
 Commit => 0,
 }
);
 return \%session_setup;
 }

Description
Method must return a hash reference using Apache::SessionX session setup arguments. This hash
reference should contain the following key/value pairs:

session_store_class
The object store class that should be used for Apache::SessionX session handling.

session_lock_class
The lock manager class that should be used for Apache::PageKit::Session session handling.

session_args
Reference to an hash containing options for the session_lock_class and
session_store_class

Name
pkit_auth_credential — Verifies login credentials and returns session key

Synopsis
 sub pkit_auth_credential {
 my ($model) = @_;

 # in this example, login and passwd are the names of the credential fields
 my $login = $model->input(’login’);
 my $passwd = $model->input(’passwd’);

 # create a session key
 # your code here.........

 return $ses_key;
 }

http://kobesearch.cpan.org/search?dist=Apache-SessionX

Description
Verifies the user-supplied credentials and return a session key. The session key is a string that is stored
on the user’s computer using cookies. Often you’ll use the user ID and a MD5 hash of a a secret key,
user ID, password.

Note that the string returned should not contain any commas, spaces, or semi-colons.

Name
pkit_auth_session_key — Verifies a session key and returns the user ID and session ID

Synopsis
 sub pkit_auth_session_key {
 my ($model, $ses_key) = @_;

 # check whether $ses_key is valid, if so return user id in $user_id
 # your code here.........

 return $ok ? ($user_id, $session_id) : undef;
 }

Description
Verifies the session key (previously generated by auth_credential) and returns the user ID, and session
ID.

The returned user ID will be fed to $r->connection->user .

The returned session ID will used to retreive the session from the database.

Name
pkit_common_code — Code common across site.

Synopsis
 sub pkit_common_code {
 my $model = shift;

 # code that should be executed for every page on your site here...
 }

Description
Code that gets called before the page and component code for every page on the site.

Name
pkit_post_common_code — Code common across site, executed after rest of code.

Synopsis
 sub pkit_post_common_code {
 my $model = shift;

 # code that should be executed for every page on your site here...
 }

Description
Code that gets called after the page and component code is executed. Note that this is experimental and
may change in future releases.

Name
pkit_cleanup_code — Cleanup code at the end of request.

Synopsis
sub pkit_cleanup_code {
 my $model = shift;
 my $dbh = $model->dbh;
 $dbh->disconnect;
}

Description
One use for this is to cleanup any database handlers:

Although a better solution is to use Apache::DBI.

Please note, that the session and page_session references are already deleted here. You can not
use $model->session and $model->page_session inside the hook.

Name
pkit_fixup_uri — filter uri for conversion into page IDs

Synopsis
 sub pkit_fixup_uri {
 my ($model, $uri) = @_;

 $uri =~ s!^/pagekit!!;
 return $uri;
 }

http://kobesearch.cpan.org/search?dist=Apache-DBI

Description
Pre-processes the URI so that it will match the page_id’s used by PageKit to dispatch the model code
and find the template and content files.

In the example listed above, the request for
http://yourwebsite/pagekit/myclass/mypage would get dispatched to the mypage
method of the myclass class, and the View/Default/myclass/mypage.tmpl template and/or
the Content/myclass/mypage.xml XML file.

Note: that no session and page_session data is available in this function for reading or writing.

See also uri_prefix.

Name
pkit_get_config_attr — Returns the value of the attr you ask for.

Synopsis
$hash_ref = $model->pkit_get_config_attr(’GLOBAL’);
$default_page = $model->pkit_get_config_attr(GLOBAL => ’default_page’);

$hash_ref = $model->pkit_get_config_attr(’SERVER’);
$id = $model->pkit_get_config_attr(’SERVER’, ’id’);

$all_pages_hash_ref = $model->pkit_get_config_attr(’PAGES’);
$hash_ref = $model->pkit_get_config_attr(’PAGE’, ’restricted’);
$require_login = $model->pkit_get_config_attr(’PAGE’, ’restricted’, ’require_login’);

$all_views_hash_ref = $model->pkit_get_config_attr(’VIEWS’);
$hash_ref = $model->pkit_get_config_attr(’VIEW’, ’pdf’);
$media = $model->pkit_get_config_attr(’VIEW’, ’pdf’, ’media’);

$hash_ref = $model->pkit_get_config_attr(’USER’);
$location = $model->pkit_get_config_attr(’USER’, ’location’);

Description
The first argument is the sectionname in your Config/Config.xml this can be one of
GLOBAL|SERVER|PAGES|PAGE|VIEWS|VIEW|USER. If no more arguments are given, you get a
hashref with all tags as keys and all attrs as values for the section in question back. For the sections
PAGE and VIEW you get a href back which values are a href to the subsections. If you call to with
two params, the second parameter is the name of the key you ask for. The three parameter form is only
allowed for pages and views, where the second argument is the page or view and the third is the name
of the key you are interested in. If nothing is found, undef is returned. Otherwise the attr you ask for or
a hashref. Note, that the value you get is the value in the Config.xml this is not ever the same as the
value pagekit is working with. Ie: if you ask for pkit_get_config_attr(GLOBAL => ’default_page’);
you might get undef but PageKit uses ’index’ as this is the default.

Name
pkit_get_default_page — Returns "index" page when no page_id is specified.

Synopsis
 sub pkit_get_default_page {
 my ($model) = @_;

 if($model->pnotes(’user_id’)){
 # user is logged in, go to account page
 return ’myaccount’;
 } else {
 # user not logged in, go to main page
 return ’index’;
 }
 }

Description
If no page is specified, then this subroutine will return the page_id of the page that should be
displayed. You only have to provide this routine if you wish to override the default method, which
simply returns the default_page attribute as listed in the Config/Config.xml file.

Name
pkit_merge_sessions — Merges current session with session associated with login when user first logs
in.

Synopsis
 # This is the default merge method, included in Apache::PageKit::Model
 # and called unless you over-ride the method in your Model class
 sub pkit_merge_sessions {
 my ($model, $old_session, $new_session) = @_;
 while(my ($k, $v) = each %$old_session){
 next if $k eq ’_session_id’;
 $new_session->{$k} = $v unless exists $new_session->{$k};
 }
 }

Description
As of PageKit 1.05, sessions are associated with logins. If a user logs in, PageKit retreives the session
associated with that login. This method can be used to specify how the data from the current session is
merged with the data from the retreived session.

Name
pkit_output_filter — Filters output generated by PageKit

Synopsis
 sub pkit_output_filter {
 my ($model, $output_ref) = @_;
 if($model->apr->parsed_uri->scheme eq ’https’){
 $$output_ref =~ s(http://images.yourdomain.com/)(https://images.yourdomain.com/)g;
 }
 }

Description
Filters the output from the PageKit handler. Should only use when necessary, a better option is to
modify the templates directly.

In the example above we filter the image links to that they point to the secure site if we are on a secure
page (the only good use of pkit_output_filter that I know of)

Name
pkit_startup — Class method called at server startup.

Synopsis
sub pkit_startup {
 my ($class, $pkit_root, $server, $config) = @_;
 my $pic_cache_dir = $config->get_global_attr(’my_picture_cache’) || ’’;
 my $unlink_sub = sub {
 -f && unlink;
 };
 File::Find::find(sub { -f && unlink }, $pic_cache_dir);
}

Description
Called at server startup with PageKit root, server, and configuration object passed as parameters. Note
that the configuration API may change.

Name
pkit_default — Default class method

Synopsis
sub pkit_default {
 # class default code here ...
}

Description
Class method called for every page in the same class which has page code and/or content. It is called
after pkit_common_code and before page code.

NOTE: currently this is the only pkit_* method which can exist outside Common.pm

PageKit API

input - Get request parameters
pkit_send - Can be used to send data to the client.
pkit_component_params_hashref - Get access to the component parameters.
pkit_input_hashref - Gets all request paramaters.
fillinform - Fills in HTML Forms
ignore_fillinform_fields - Fills in HTML Forms
pnotes - Pass values from one method/handler to another
output_convert - Outputs data for display, converting charset.
output - Outputs data for display.
pkit_query - Wrapper to HTML::Template::query
apr - Returns Apache::Request object
pkit_status_code - Get or set the status code for you page.
dbh - Returns database handle
session - Gets session object
page_session - Gets page session object
pkit_message - Adds message to PKIT_MESSAGES tag
pkit_gettext_message - Adds translated message to PKIT_MESSAGES tag
pkit_gettext - Translates the text to the clients language if possible else return the messages as it was
before.
pkit_internal_execute_redirect - Internal redirection to another page inside the PageKit application.
Also execute the code for the new destination page.
pkit_internal_redirect - Internal redirection to another page inside the PageKit application
pkit_redirect - Redirect to another URL.
pkit_set_errorfont - Sets PKIT_ERRORSPAN tags
pkit_set_errorspan - Sets PKIT_ERRORSPAN tags
pkit_validate_input - Validates input from an HTML form.
pkit_get_orig_uri - Gets the original URI requested.
pkit_get_page_id - Gets the page ID.
pkit_get_server_id - Gets server ID.
pkit_get_session_id - Gets the session id
pkit_get_page_session_id - Gets the page session id or undef in case this page has no page_session
requested.
pkit_lang - Gets Language preference of user
pkit_root - Gets PageKit root directory
pkit_user - Gets user ID of authenticated user.

Theese methods are available to the user as Apache::PageKit::Model API.

Name
input — Get request parameters

Synopsis
 # get single parameter
 my $value = $model->input($key);

 # get all parameters
 my @keys = $model->input;

 # set pkit_view request parameter
 $model->input(pkit_view => "printable");

Description
Gets requested parameter from the Apache request object, if called without any parameters, gets all
available input parameters:

Name
pkit_send — Can be used to send data to the client.

Synopsis
 #
 # for a filename, the media_type will be found by the MIME::Types module.
 #
 my $status_code = $model->pkit_send($filename);

 my $status_code = $model->pkit_send(\$data, ’image/png’);

 # $data_ref is not zipped by the pkit_send methode, it sends
 # it only with this encoding header.
 my $status_code = $model->pkit_send($data_ref, ’html/text’, ’gzip’);

 my $status_code = $model->pkit_send($fh);

 $model->pkit_status_code($status_code);

Description
Can be used to send data to the client. From a scalar_ref a filename or a reference to a filehandle. If the
first argument is a filename, and the second argument media_type is not set, the module
MIME::Types try to find the media_type for us depending on the suffix. If this fails or the optional
second argument media_type is not set, the default application/octet-stream is used. If the
request was only a head request, only a header is send back to the client. The optional third argument
if the content_encoding (ie: gzip|x-gzip|compress|x-compress) it is only used if the media_type is
html/text.

Name
pkit_component_params_hashref — Get access to the component parameters.

Synopsis
 <PKIT_COMPONENT NAME="xxx" headline="title" datasrc="select * from a_table">
 <PKIT_COMPONENT NAME="xxx" headline="another_title" datasrc="select * from another_table">
 <PKIT_COMPONENT NAME="xxx" headline="title" datasrc="select * from a_table">

 sub xxx {
 my $model = shift;
 my $fields = $model->pkit_component_params_hashref;
 my $select_statement = $fields->{DATASRC};
 ...
 }

Description
This method return a hashref that contain the component parameters (or undef if the calling routine is
not a component). All keys are uppercase and the NAME of the component is not present in the hash.
If the same component is used twice or more, the component code is called only once.

Name
pkit_input_hashref — Gets all request paramaters.

Synopsis
 $params = $model->pkit_input_hashref;

Description
This method fetches all of the parameters from the Apache request object, returning a reference to a
hash containing the parameters as keys, and the parameters’ values as values. Note a multivalued
parameters is returned as a reference to an array.

Note, that the values in this hash are readonly. To modify something use $model->input (key =>
$value);.

Name
fillinform — Fills in HTML Forms

Synopsis
 $model->fillinform(email => $email);

Description
Used with HTML::FillInForm to fill in HTML forms. Useful for example when you want to fill an edit
form with data from the database.

Name
ignore_fillinform_fields — Fills in HTML Forms

Synopsis
 $model->ignore_fillinform_fields(qw/email name/);

Description
All fields named in this call are NOT changed by fillinform.

Name
pnotes — Pass values from one method/handler to another

Synopsis
sub pkit_auth_credential {
 # ...
 $model->pnotes(user_id => $user_id);
 # ...
}

Description
Wrapper to mod_perl’s pnotes method, used to pass values from one handler to another.

In the example above the user_id is set when the user gets authenticated.

Name
output_convert — Outputs data for display, converting charset.

Synopsis
 $model->output_convert(output => {foo => $utf8_text},
 input_charset => ’UTF-8’);

Description
This is a wrapper to the output method. It converts the output from the character set specified by the
charset argument to default_output_charset. If the character set is not specified, then
default_input_charset is used.

Examples
 # converts from UTF-8
 $model->output_convert(output => { key => $utf8_text },
 charset => ’UTF-8’);
 # converts from default_input_charset
 $model->output_convert(key => $text)

Name
output — Outputs data for display.

Synopsis
 $model->output(NAME => "John Doe");

Description
This is similar to the HTML::Template param method. It is used to set the model tags in the PageKit
templates..

Examples
 # set multiple paramaters
 $model->output(firstname => $firstname,
 lastname => $lastname);

 # set multiple paramaters with hash ref
 $model->output({firstname => $firstname,
 lastname => $lastname});

 # sets <MODEL_LOOP NAME="foo">
 # <MODEL_VAR NAME="bar"/>
 # <MODEL_VAR NAME="baz"/>
 # </MODEL_LOOP>
 $model->output(foo => [
 {bar => $bar1, baz => $baz1},
 {bar => $bar2, baz => $baz2},
]);

Name
pkit_query — Wrapper to HTML::Template::query

Synopsis
 my $type = $model->pkit_query(name => ’foo’);

Description
Basically a wrapper to the query method HTML::Template. Queries the template for the current
page_id. Useful when you have multiple views and want to make sure that you need to hit a database.

Name
apr — Returns Apache::Request object

Synopsis
 my $apr = $model->apr;

Description
Returns Apache::Request.

Name
pkit_status_code — Get or set the status code for you page.

Synopsis
 # get status code
 my $status_code = $model->pkit_status_code;

 # set status code
 $model->pkit_status_code(DONE);
 $model->pkit_status_code(NOT_FOUND);
 $model->pkit_status_code(OK);

 # return old status code
 return $model->pkit_status_code(OK);

 # remove previously set returncode
 $model->pkit_status_code(undef);

Description
Set or get the status code for your page. If you set a status code the execution of your model code ends
after the peace of code that sets the status code. Even if you set the status code to OK. The status code
is passed back to the webserver.

Name
dbh — Returns database handle

Synopsis
 my $dbh = $model->dbh;

Description
Returns a database handle, as specified by the pkit_dbi_connect method.

Name
session — Gets session object

Synopsis
 my $session = $model->session;

Description
Returns a hash tied to Apache::SessionX

Name
page_session — Gets page session object

Synopsis
 my $page_session = $model->page_session;

Description
Returns a hash tied to Apache::SessionX If this was requested in Config/Config.xml otherwise
undef.

Name
pkit_message — Adds message to PKIT_MESSAGES tag

Synopsis
 # regular message
 $model->pkit_message("Your listing has been deleted.");
 # error message
 $model->pkit_message("You did not fill out the required fields.",
 is_error => 1);

http://kobesearch.cpan.org/search?dist=Apache-SessionX
http://kobesearch.cpan.org/search?dist=Apache-SessionX

Description
Adds a message to be displayed to the user. The message can displayed using the
<PKIT_MESSAGES> tag.

To add an error message, set is_error to a true value.

Note that the message is passed along in the URI if you perform a redirect using the pkit_redirect
method.

Name
pkit_gettext_message — Adds translated message to PKIT_MESSAGES tag

Synopsis
 # regular message
 $model->pkit_gettext_message("Your listing has been deleted.");
 # error message
 $model->pkit_gettext_message("You did not fill out the required fields.",
 is_error => 1);
 # pkit_gettext_message is a shortcut for
 $model->pkit_message($model->pkit_gettext(’the message’), ...);

Description
Adds a translated message to be displayed to the user. The message can displayed using the
<PKIT_MESSAGES> tag.

To add an error message, set is_error to a true value.

Note that the message is passed along in the URI if you perform a redirect using the pkit_redirect
method. See also pkit_gettext and pkit_message.

Name
pkit_gettext — Translates the text to the clients language if possible else return the messages as it was
before.

Synopsis
 $model->pkit_gettext(’You have successfully logged out.’);

Description
Translates the text to the clients language, if a .mo file in that language is found. See also
pkit_gettext_message.

Name
pkit_internal_execute_redirect — Internal redirection to another page inside the PageKit application.
Also execute the code for the new destination page.

Synopsis
 $model->pkit_internal_execute_redirect(’myotherpage’);
 return;

Description
Resets the page_id. This is usually used "redirect" to different template inside your application and
execute the modelcode for the new page.

From PageKit v1.12 on pkit_internal_redirect handle full url’s and strip them. Parameters at the end of
request are removed. This is usefull if you get the url from a pkit_done like parameter. See also
pkit_redirect and pkit_internal_redirect

Name
pkit_internal_redirect — Internal redirection to another page inside the PageKit application

Synopsis
 $model->pkit_internal_redirect(’myaccount’);
 return;

Description
Resets the page_id. This is usually used "redirect" to different template.

Note that you should perform a pkit_redirect for POST requests. From PageKit v1.12 on
pkit_internal_redirect handle full url’s and strip them. Parameters at the end of request are removed.
This is usefull if you get the url from a pkit_done like parameter.

Name
pkit_redirect — Redirect to another URL.

Synopsis
 $model->pkit_redirect("http://www.pagekit.org/");

Description
It is strongly recommend that you use this method on pages where a query that changes the state of the
application is executed. Typically these are POST queries that update the database.

Note that this passes along the messages set my pkit_message if applicable.

Name
pkit_set_errorfont — Sets PKIT_ERRORSPAN tags

Synopsis
 $model->pkit_set_errorfont(’state’);

 # possible since version 1.08
 $model->pkit_set_errorfont(’state’, ’#00ff00’);

Description
Superfluous since PageKit 1.08 please use pkit_set_errorspan.

Sets the corresponding PKIT_ERRORSPAN tag in the template. Useful for implementing your own
custom constraints. Since version 1.08 it is possible to select the errorstr. This is done with the second
parameter. The color must be a string thar starts with a # followed by exactly six hexdigits. If you do
not specify the errorstr, the string is taken from the default_errorstr . See also
PKIT_ERRORSTR.

Name
pkit_set_errorspan — Sets PKIT_ERRORSPAN tags

Synopsis
 $model->pkit_set_errorspan(’state’);

 # possible since version 1.08
 $model->pkit_set_errorspan(’state’, ’#00ff00’);

Description
Sets the corresponding PKIT_ERRORSPAN tag in the template. Useful for implementing your own
custom constraints. Since version 1.08 it is possible to select the errorstr. This is done with the second
parameter. The color must be a string thar starts with a # followed by exactly six hexdigits. If you do
not specify the errorstr, the string is taken from the default_errorstr . See also
PKIT_ERRORSTR.

Name
pkit_validate_input — Validates input from an HTML form.

Synopsis
 # very simple validation, just check to see if name field was filled out
 my $input_profile = {required => [qw (name)]};
 # validate user input
 unless($model->pkit_validate_input($input_profile)){
 # user must have not filled out name field,
 # i.e. $apr->param(’name’) = $model->input(’name’) is
 # not set, so go back to original form
 # if you used a <PKIT_ERRORFONT NAME="name"> tag, then it will be set to
 # red
 $model->pkit_internal_redirect(’orig_form’);
 return;
 }

Description
Takes an hash reference containing a Data::FormValidator input profile and returns true if the request
parameters are valid.

Name
pkit_get_orig_uri — Gets the original URI requested.

Synopsis
 my $orig_uri = $model->pkit_get_orig_uri;

Name
pkit_get_page_id — Gets the page ID.

Synopsis
 my $page_id = $model->pkit_get_page_id;

Name
pkit_get_server_id — Gets server ID.

http://kobesearch.cpan.org/search?dist=Data-FormValidator

Synopsis
 my $server_id = $model->pkit_get_server_id;

Description
Gets the server_id for the server, as specified by the PKIT_SERVER directive in the httpd.conf
file.

Name
pkit_get_session_id — Gets the session id

Synopsis
 # the following two line are equivalent, with one difference, if the session does
 # not exist already then the second line creates a new session. The first line
 # does not.
 my $session_id = $model->pkit_get_session_id;
 my $session_id = $model->session->{_session_id};

Description
Gets the session id if you have set up session management using pkit_session_setup.

Name
pkit_get_page_session_id — Gets the page session id or undef in case this page has no page_session
requested.

Synopsis
 my $page_session_id = $model->pkit_get_page_session_id;

Description
Gets the page session id if you have set up session management using pkit_session_setup and this page
want a page_session see: page_session and page_session.

Name
pkit_lang — Gets Language preference of user

Synopsis
 my $pkit_lang = $model->pkit_lang;

Description
Gets the language preference of the user, as set by Accept-Language incoming HTTP header or
by the pkit_lang request parameter.

Can be used for selecting which content should be retreived from the database.

Name
pkit_root — Gets PageKit root directory

Synopsis
 my $pkit_root = $model->pkit_root;

Description
Gets the PageKit root directory, as defined by PKIT_ROOT in your httpd.conf file.

Name
pkit_user — Gets user ID of authenticated user.

Synopsis
 my $pkit_user = $model->pkit_user;

Description
Gets the user_id from $apr->connection->user , set with the return value of
pkit_auth_session_key.

PageKit Template Tags
PageKit Templates are templates that contain HTML::Template-esque tags. They are either stored as
files in the View directory or generated from XSLT transformations. There are three main classes of
tags, XML content tags, Model tags, and PageKit tags.

XML content tags

CONTENT_VAR - Extract a node from an XML file using XPath.
CONTENT_LOOP - Extract a set of nodes from an XML file using XPath.
CONTENT_IF, CONTENT_UNLESS, CONTENT_ELSE - Displays enclosed section if content sets
value to true/false.

Content tags use XPath queries to retreive data from XML Content files. The XML::LibXML and
HTML::Template::XPath modules are used behind the scenes.

http://kobesearch.cpan.org/search?dist=HTML-Template
http://kobesearch.cpan.org/search?dist=XML-LibXML
http://kobesearch.cpan.org/search?dist=HTML-Template-XPath

Name
CONTENT_VAR — Extract a node from an XML file using XPath.

Synopsis
 <CONTENT_VAR NAME="document(’site.xml’)//title"/>

Description
Uses the XPath query specified in the NAME to extract content from the XML file specified by the
document function. Note that the document function is relative with respect to the page_id of the
enclosing page. If document is omitted, then defaults to the content file that corresponds to the page_id
of the enclosing page.

Name
CONTENT_LOOP — Extract a set of nodes from an XML file using XPath.

Synopsis
 <CONTENT_LOOP NAME="document(’site.xml’)//name">
 <CONTENT_VAR NAME="surname"/>
 <CONTENT_VAR NAME="firstname"/>
 </CONTENT_LOOP>

Description
Uses the XPath query specified in the NAME to extract content from the XML file specified by the
document function. If document is omitted, then defaults to the content file that corresponds to the
URI being view.

Name
CONTENT_IF, CONTENT_UNLESS, CONTENT_ELSE — Displays enclosed section if content sets
value to true/false.

Synopsis
 <CONTENT_IF NAME="foo">
 Text to be included if foo is included in Content and is true
 <CONTENT_ELSE>
 Text to be included if foo not inclued in Content or is false
 </CONTENT_IF>

 <CONTENT_UNLESS NAME="bar">
 Text to be included if bar is included in Content and is true
 </CONTENT_UNLESS>

Description
If the XPath query in the name attribute returns a true value, then the text enclosed by the
CONTENT_IF tag will be included in the template.

Please note: if you ask for loop_context_vars like (__first__, __odd__, __inner__ or __last__) that
they must be written in lowercase!.

Model tags

MODEL_VAR - Filled in with scalar value set from Model’s output method
MODEL_LOOP - Filled in with array reference of hash references set from Model’s output method.
MODEL_IF, MODEL_UNLESS, MODEL_ELSE - Displays enclosed section if model sets value to
true/false.

Model tags refer to data set by the output method of the model classes. They correspond to the
HTML::Template. The PageKit pre-processor simply replaces MODEL with TMPL before running the
template through HTML::Template.

Name
MODEL_VAR — Filled in with scalar value set from Model’s output method

Synopsis
 <MODEL_VAR NAME="foo">

Description
This tag is very simple. It is replaced by the corresponding value set in the Model by the output
method. You may also use ESCAPE="HTML" and ESCAPE="URL" to escape HTML, and URLs
respectively.

Name
MODEL_LOOP — Filled in with array reference of hash references set from Model’s output method.

Synopsis
 <MODEL_LOOP NAME="foo">
 <MODEL_VAR NAME="bar"/>
 <MODEL_VAR NAME="baz"/>
 </MODEL_LOOP>

Description
This tag used for displaying a "table" of data. The data is set from the model using the output method,
and is a reference to an array of hash references. Using the table analogy, the hash references are the
rows, the keys of the hash references are the column headers, the hash values are the data.

Name
MODEL_IF, MODEL_UNLESS, MODEL_ELSE — Displays enclosed section if model sets value to
true/false.

Synopsis
 <MODEL_IF NAME="foo">
 Text to be included if foo is true
 <MODEL_ELSE>
 Text to be included if foo is false
 </MODEL_IF>

 <MODEL_UNLESS NAME="bar">
 Text to be included if bar is false
 </MODEL_UNLESS>

Description
If the parameter in the name attribute is set to true by the output method of the Model, then the text
enclosed by the MODEL_IF tag will be included in the template.

PageKit tags

PKIT_COMMENT - Write comments inside your templates. The comments are stripped out of your
source. Before it is delivered.
PKIT_COMPONENT - Include templates and associate model code.
PKIT_ERRORSTR - Named field for your errorstr.
PKIT_MACRO - Placeholder for components.
PKIT_ERRORFONT - Highlights Invalid Fields
PKIT_ERRORSPAN - Highlights Invalid Fields
PKIT_HAVE_MESSAGES - Include the block between <PKIT_HAVE_MESSAGES> and
</PKIT_HAVE_MESSAGES> only, if one or more messages are avail.
PKIT_HAVE_NOT_MESSAGES - Include the block between <PKIT_HAVE_NOT_MESSAGES>
and </PKIT_HAVE_NOT_MESSAGES> only, if no messages are avail.
PKIT_HOSTNAME - Fills in the hostname in the URL.
PKIT_MESSAGES - Display messages passed to pkit_message method.
PKIT_SELFURL - URL of current page.
PKIT_VIEW - Wraps a section of text to be displayed for a view.
PKIT_ELSE - Can be used to add a else part to PKIT_... tags.
PKIT_IS_ERROR - Used to display messages only if it is a errormessage.
PKIT_NOT_ERROR - Used to display messages only if it is a NOT a errormessage.

PageKit tags refer to data that is set by the PageKit controller. These correspond to functionality or
utility functions that are common across different web applications.

Name
PKIT_COMMENT — Write comments inside your templates. The comments are stripped out of your
source. Before it is delivered.

Synopsis

 <PKIT_COMMENT>This is a comment!</PKIT_COMMENT>

Description
The <PKIT_COMMENT> tag is used to comment the block between <PKIT_COMMENT> and
</PKIT_COMMENT>. This is done in a ballanced manner, so it is possible to have nested blocks of
comments.

If you have more opening tags than closing ones, the spare opening tags are seen as text in the
comment, as long as they are surrounded by any close tag.

Close tags are closed as soon as possible, so if your source contains more close tags than open tags,
spare close tags are in your delivered source. </PKIT_COMMENT> is available as of
Apache::PageKit 1.13.

Name
PKIT_COMPONENT — Include templates and associate model code.

Synopsis
 <PKIT_COMPONENT NAME="html_header">

 <PKIT_COMPONENT NAME="top_10" loop=top_10_cd headline="CD charts" >
 <PKIT_COMPONENT NAME="top_10" loop=top_10_maxi headline="Maxi charts" >

 <PKIT_COMPONENT NAME="newsbox" news=’<MODEL_VAR NAME="joke">’ >

Description
This has two functions. The first works like Server Side Includes, including another PageKit Template
that is in the View directory or is generated from the corresponding XML file using XSLT.

The second is to associate a method from the Model the page. This is used to fill in any
MODEL_VAR and MODEL_LOOP tags in the included PageKit Template.

The 2. 3. and 4. example define also some macros. These macros are also available for XSLT with the
<xsl:param name="..."> tag. See PKIT_MACRO

Name
PKIT_ERRORSTR — Named field for your errorstr.

Synopsis
 <PKIT_ERRORSTR>
 <font color="<PKIT_ERRORSTR>">bla

Description
This tag is replaced by the string that you define with default_errorstr . If it is not defined the
default is #ff0000.

See also PKIT_MESSAGES for a example.

Name
PKIT_MACRO — Placeholder for components.

Synopsis
 <MODEL_VAR NAME="<PKIT_MACRO NAME=headline>">
 <MODEL_LOOP NAME="<PKIT_MACRO NAME=loop>">
 <MODEL_VAR NAME="title"/>
 </MODEL_LOOP>

Description
A PKIT_MACRO is replaced with the value of the key in PKIT_COMPONENT that match the name of
the macro.

This tag is only valid inside a template that is loaded with PKIT_COMPONENT

Name
PKIT_ERRORFONT — Highlights Invalid Fields

Synopsis
 <PKIT_ERRORFONT NAME="lastname"> Last Name </PKIT_ERRORFONT> <input name="lastname">
 <PKIT_ERRORFONT> new for PageKit 1.10 </PKIT_ERRORFONT>

Description
PKIT_ERRORFONT is the outdated alias for PKIT_ERRORSPAN

This tag highlights fields in red that Model reported as being filled in incorrectly. Or, since version
1.10 of pkit it is possible to suppress the NAME attribute. Then the field is always colored or whatever
you want.

Name
PKIT_ERRORSPAN — Highlights Invalid Fields

Synopsis
 <PKIT_ERRORSPAN NAME="lastname"> Last Name </PKIT_ERRORSPAN> <input name="lastname">
 <PKIT_ERRORSPAN> new for PageKit 1.10 </PKIT_ERRORSPAN>

Description
This tag highlights fields in red that Model reported as being filled in incorrectly. Or, since version
1.10 of pkit it is possible to suppress the NAME attribute. Then the field is always colored or whatever
you want.

Name
PKIT_HAVE_MESSAGES — Include the block between <PKIT_HAVE_MESSAGES> and
</PKIT_HAVE_MESSAGES> only, if one or more messages are avail.

Synopsis
 <PKIT_HAVE_MESSAGES>
 Here are some messages for you: <p>
 <PKIT_MESSAGES>
 <PKIT_IS_ERROR><font color="<PKIT_ERRORSTR>"></PKIT_IS_ERROR>
 <PKIT_MESSAGE>
 <PKIT_IS_ERROR></PKIT_IS_ERROR>
 <p>
 </PKIT_MESSAGES>
 </PKIT_HAVE_MESSAGES>

Description
Include the block between <PKIT_HAVE_MESSAGES> and </PKIT_HAVE_MESSAGES> only, if
one or more messages are avail.

Name
PKIT_HAVE_NOT_MESSAGES — Include the block between <PKIT_HAVE_NOT_MESSAGES>
and </PKIT_HAVE_NOT_MESSAGES> only, if no messages are avail.

Synopsis
 <PKIT_HAVE_NOT_MESSAGES>
 No messages for you! <p>
 </PKIT_HAVE_NOT_MESSAGES>

Description
Include the block between <PKIT_HAVE_NOT_MESSAGES> and
</PKIT_HAVE_NOT_MESSAGES> only, if no messages are avail.

Name
PKIT_HOSTNAME — Fills in the hostname in the URL.

Synopsis
 <PKIT_HOSTNAME>

DESCRIPTION
Returns the hostname in the URL of the page being served. Particulary useful when you have
production and development servers and you need to link to a secure page.

Note that if you are running a proxy server in front of the PageKit server, you probably want to use
mod_proxy_add_uri.c. PageKit will extract the hostname from the frontend server using the
X-Original-URI header that mod_proxy_add_uri sets.

Name
PKIT_MESSAGES — Display messages passed to pkit_message method.

Synopsis
 <PKIT_MESSAGES>
 <PKIT_IS_ERROR><font color="<PKIT_ERRORSTR>"></PKIT_IS_ERROR>
 <PKIT_MESSAGE>
 <PKIT_IS_ERROR></PKIT_IS_ERROR>
 <p>
 </PKIT_MESSAGES>

 <PKIT_MESSAGES>
 <PKIT_IS_ERROR><font color="<PKIT_ERRORSTR>"><PKIT_MESSAGE></PKIT_IS_ERROR>
 </PKIT_MESSAGES>

 <PKIT_MESSAGES>
 <PKIT_NOT_ERROR><font color="<PKIT_ERRORSTR>"><PKIT_MESSAGE></PKIT_NOT_ERROR>
 </PKIT_MESSAGES>

Description
Displays messages passed to pkit_message method in the Model code.

Name
PKIT_SELFURL — URL of current page.

Synopsis
 <PKIT_SELFURL exclude="foo bar">

Description
The URL of the current page, including CGI parameters, but excluding those listed in the exclude
attribute. Appends a ’&’ or ’?’ at the end to allow additionial parameters.

Note that if you are running a proxy server in front of the PageKit server, you probably want to use
mod_proxy_add_uri.c. PageKit will take the URL from the frontend server using the X-Original-URI
header that mod_proxy_add_uri sets.

Name
PKIT_VIEW — Wraps a section of text to be displayed for a view.

Synopsis
 <PKIT_VIEW NAME="print">This is text display for the printable view</PKIT_VIEW>

Description
Displays the enclosed text if the pkit_view request parameter is set to NAME attribute.

Name
PKIT_ELSE — Can be used to add a else part to PKIT_... tags.

Synopsis
 <PKIT_VIEW NAME="print">This is text display for the printable view<PKIT_ELSE>And this text if hte view is NOT printable</PKIT_VIEW>

Description
Can be used to add a else part to PKIT_VIEW, PKIT_HAVE_MESSAGES,
PKIT_HAVE_NOT_MESSAGES, PKIT_IS_ERROR or PKIT_NOT_ERROR.

http://tjmather.com/mod_proxy_add_uri.c

Name
PKIT_IS_ERROR — Used to display messages only if it is a errormessage.

Synopsis
 <PKIT_HAVE_MESSAGES>
 Here are some error messages for you: <p>
 <PKIT_MESSAGES>
 <PKIT_IS_ERROR>
 <PKIT_MESSAGE>
 </PKIT_IS_ERROR>
 </PKIT_MESSAGES>
 </p>
 </PKIT_HAVE_MESSAGES>

Description
Used to display messages only if it is a errormessage. Or display errors and warnings in different
places.

Name
PKIT_NOT_ERROR — Used to display messages only if it is a NOT a errormessage.

Synopsis

 <PKIT_HAVE_MESSAGES>
 Here are some warnings messages for you: <p>
 <PKIT_MESSAGES>
 <PKIT_NOT_ERROR>
 <PKIT_MESSAGE>
 </PKIT_NOT_ERROR>
 </PKIT_MESSAGES>
 </p>
 </PKIT_HAVE_MESSAGES>

 <PKIT_HAVE_MESSAGES>
 Here are some error messages for you: <p>
 <PKIT_MESSAGES>
 <PKIT_IS_ERROR>
 <PKIT_MESSAGE>
 </PKIT_IS_ERROR>
 </PKIT_MESSAGES>
 </p>
 </PKIT_HAVE_MESSAGES>

Description
Used to display messages only if it is NOT a errormessage. Or display errors and warnings in different
places.

Request parameters
These are parameters that are specified in GET requests and POST requests where Content-type is
one of application/x-www-form-urlencoded or multipart/form-data .

pkit_done

The page to return to after the user has finished logging in or creating a new account.

pkit_lang

Sets the user’s preferred language, using a ISO 639 identifier.

pkit_login_page

This parameter is used to specify the page that user attempted to login from. If the login fails, this
page is redisplayed.

pkit_login

If this is set to true, then an attempt to log in is made.

pkit_logout

If this is set to true, logs user out.

pkit_remember

If set to true upon login, will save user’s cookie so that they are still logged in next time they
restart their browser.

pkit_view

Used to implement multiple views/co-branding. For example, if set to print, will search for
templates in the View/print directory before using templates in the View/Default
directory, and sets the <PKIT_VIEW NAME="print"> tag in the view to true.

 Next

 Chapter 1. Overview of Features

http://www.oasis-open.org/cover/iso639a.html

	PageKit 1.13
	User's Guide
	T.J. Mather
	Boris Zentner

	Chapter€1.€Overview of Features
	Model/View/Content/Controller approach to design
	Model
	View
	Content
	Controller

	Model of OO Perl Classes
	Base Model Class
	Derived Model Class
	Inheritance Hierarchy

	XSLT and HTML::Template::XPath
	XSLT
	HTML::Template::XPath

	Language Localization
	Applying to Content: HTML::Template::XPath
	Applying to Content: XSLT
	Applying to Model
	Character set translation

	Caching
	Component based architecture
	Sessions
	Warning!

	Authentication
	Form Validation
	Sticky HTML Forms
	Multiple Views
	On-line Editing tools
	Error Reporting
	Chapter€2.€Reference
	Configuration Options
	Global Attributes
	Section Attributes
	Server Attributes
	User Attributes
	View Attributes
	Page Attributes

	Model API
	PageKit Extensions

	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	PageKit API

	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Examples
	Name
	Synopsis
	Description
	Examples
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Name
	Synopsis
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	PageKit Template Tags
	XML content tags

	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Model tags

	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	PageKit tags

	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	DESCRIPTION
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Name
	Synopsis
	Description
	Request parameters

